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REMARKS ON WAVE SOLUTIONS OF THE NONLINEAR HEAT-CONDUCTION EQUATION 

V. A. Bubnov UDC 536.33 

Wave solutions of the nonlinear heat-conduction equation are analyzed and their rela- 
tion to self-similar solutions is established. Solutions of the hyperbolic and the 
nonlinear heat-conduction equations are compared. 

i. Undamped Thermal Waves 

Let us consider the nonlinear heat-conduction equation 

OTot oxO Ik(T) 0~xT] (i) 

and compare its wave solutions with solutions of the linear hyperbolic equation 

! 02T c~9 OT OZT 
+ -- (2) 

g2 Ot2 %o Ot OX 2 

According to the data [i], CvP/Xo = 0.753"10 -3 sec/cm 2 for helium at 2~ In this case, (2) 
can be replaced by the following 

02T __ gZ __O2T , (3) 
OtZ Ox z 

which describes the propagation of undamped thermal waves. To find the wave solutions, we go 
over to the wave variable 

= v ( ~  + ct (4) 

in (!). Let us mention the transformation formula 

OT dT OT ~, dv dT 
- - c  - - ;  - - - - -  

Ot d~ Ox dx d~ 

Ox - - T - ~  dx ~ d~ + l~l\ dx j d~ ~ 

Then taking into account that d2v/dx 2 = 0, we will have 

dT d~ ~ , ~  ) ~ k (T)--~ ~-~x d~ 
(5) 
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For wave solutions to exist, (5) should be either algebraic, or an ordinary differential 
relative to k(T) or T(~, T). 

Let k = aT n. Then we must set 

dv _ b; T n-1 d__~T 

dx cI~ 

into (5), which yields, in turn 

_ P; Tn dZT dT - -  q ( 6 )  
d~ 2 d~ 

I 1 

v = b  o-t-bx; T = ( n p )  n ~ ;  q = ( l _ n )  p. (7) 

We hence obtain c = apb a from (5). The final solution for the direct wave has the form 

The solution (8) was used in [2] 
way e 

1 

ab 2 
(s)  

for b = --i. We have an analogous formula for the reverse 

1 

(9) 

The presence here of the constant bo # 0 eliminates the singularity at the point x = 0, t = 
0 for n < 0. Substituting (8) into (3) yields c = gb, from which the relationship between 
the relaxation parameter and the thermophysical constants (i) results. Since (3) has a solu- 
tion in the form of (8) and (9), then (8) and (9) define the class of undamped wave solutions 
of (i). 

In contrast to (i), Eq. (3) allows the superposition principle, in conformity with which 
a solution in the form of trigonometric functions can be obtained from the function T = 

(np) I/n~ I/n. The presence of certain identical solutions for (I) and (3) permits the authors 
of [3] and [4] to reduce the problem of finding the thermophysical characteristics of the 
nonlinear heat-conduction equation to the problem of solving linear higher-order equations, 
Let us study the case n = --i. Let [c[ = [co[ = c, and let us form the difference T = T2 --TI. 
We will have 

2ab2t 
T =  

(bo --  bx - -  ct)(bo + bx + et) 

Let us set bo = 0, b = i, then 

T = 2at/(x 2 - -  cZtZ). 

This formula is obtained in [5] in an analysis of self-similar solutions. It is a rare exam- 
ple of the superposition of two solutions for a nonlinear equation, 

If n = I, bo = 0, then we have from (8) 

T I = ab 2 c~ - ( bc x ) , 

which is an example of the self-similar solution obtained in [6]. 

Let us examine still another example of a functional dependence of the thermal diffusiv- 
ity coefficient k(T) = A + BT. Here (5) goes over into a nonlinear ordinary differential equa- 
tion in T(~) 

c dr B[  dr )~ a=T (lO) 
b 2 d~ ~ d~ ] = ( A J r - B T )  d---- ~- 
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One of its particular solutions can be indicated 

c 
T -- ~ + P o  

Bb 2 

that satisfies (3) also. It therefore also is in the class of undamped wave solutions. 

2. Damped Thermal Waves 

Let us set 

dv dT d2T dT 
- -  b; - -  f ,  ( T ) ;  - -  [2 ( T ) - -  , 

dx d~ d~ 2 d~ ($1) 

into (5) , whereupon 

dk c fi (W) ~ 4- f2 (T) k (W) = 
( 1 2 )  a T  bZ 

If (ll) and (12) are solved jointly, then we have its corresponding function k(T) for each 
function T(~). For instance, let f1(T) = --ET, f2(T) = --$, then the integrals of (ii) and (12) 

take the form 

T = A  exp [ - -  ~(bx + c01; k (T) - -  
~b 2 

+- BT -~. (13) 

It is easy to obtain the solution for the reverse wave also: 

T = A exp [ - -  [3 ( b x - -  Cot)]; k (T) -- Co + B T - 1  . 

In turn, the hyperbolic equation (2) has two solutions 

(14) 

T.=Ao.p[ T.=Ao.p[ g (x 4- gt) ] 
o:g 2 -  ko ] ($5) 

For (15) to go over into (13) and (14), it is necessary to set 

I g 
g = ~; b; - -  c. 

~g2__ ko ~gz __ ko 

In problems of heat transfer to the soil, a heat-conduction model exists according to 
which the thermophysical parameters are functions of the coordinates and time;' Em- 
pirical data on these functions are presented in [7] for the majority of soils of the Soviet 
Union. Also presented there are test data according to which the heat-conduction coefficient 
in the upper layer of the soil varies as a sinusoid during the day, 

In conformity with this, (i) must be rewritten thus 

o t  - o ~  ~ . ( $ 6 )  

which respectively becomes, with (2), upon going over to the wave variable: 

e - - b 2  d k _ 
d~ 

e~pc c 2 

d2T 
bZk - -  

d$~ 
dT ' 

d~ 

d2T 

d~2 
dT 
d~ 

($7) 

(18) 
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The T(~) determined from the following ordinary differential equation 

d2T dT 
~ c o r l s t -  

d~2 d~ 

will be the identical solution for (17) and (18). Then (17) is transformed into a differen- 
tial equation for k(~). However, there is an arbitrariness in the selection of the function 
k(~), consequently, it is possible to proceed along the road of substituting empirical formu- 
las for k(~) in (17) and to determine T(~) from the differential equation obtained here. 

For instance, let k(~) = sinF., then in place of (17) we will have 

d2T c/b 2 -  cos ~ dT 

d~ 2 sin ~ d~ 

Let us indicate the first integral of this equation 

c 

= 

Because of the presence of a broad set of functions k($), Eq. (17) is richer than (18) in 
its solutions. However, the hyperbolic operator (2) can be extended by the introduction of 
higher derivatives with respect to time of any order [8, 9]. 

3. Material Constants of the Heat Field 

The derivation of some formula for the heat-conduction equation is accomplished from the 
heat-balance equation 

OT 
cuP -- d ive .  (19)  

at 

This relationship is valid for every place and each instant, and from it there follows that 
the heat field is characterized by temperature and heat flux fields. The Fourier hypothesis 

= - -  ~o grad T (20)  

permits calculating the heat flux field completely uniquely from the field of temperature 
gradients. At the very same time, this hypothesis introduces a scalar material constant Xo, 
that characterizes the heat field of this substance and should possess at least some degree 
of universality. 

If (20) is inadequate to the evaluation of the heat flux in terms of the temperature, 
then the question arises of whether the material constant Xo should be conserved upon further 
refinement of this relationship. If it is assumed that Xo = Xo(T) or Xo = X(x, y, z, t), then 
firstly, it is not known from what considerations to determine the mentioned functions, and 
secondly, the dimensionality of the constant appearing here will depend on the form of the 
mentioned functions. This latter circumstance does not permit characterization of the heat 
field by universal constants. 

However, the presence of identical solutions of (i) and (2) indicates the legitimacy of 
such a method of refining (20), for which an additional material constant is introduced. It 
is here possible to propose a method of refining (20) for which the number of material con- 
stants will be arbitrary. 

Indeed, the Fourier hypothesis asserts that the heat flux depends on the time and coord- 
inates only in terms of the field of temperature gradients, i.e., implicitly. We assume the 
vector ~ to depend explicitly on the time t. Then (19) can be differentiated with respect 
to the time any number of times. We differentiate it twice in succession 

OZT 0 cup - -  (div ~); (21)  
Ot 2 Ot 

~ r  02 (div ~ .  (22)  
c~p Ot--- ~ = - -  Ot--- 7 -  
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We multiply (21) and (22) by the arbitrary constants a and 5, respectively, and we then com- 
bine the equalities obtained with (19). We afterwards obtain 

OST O~T + 07" ] =--divQ. (23) 

The notation for Q is here 

_~ --> 

Oq O~q (24) 

Now, we express the vector Q in terms of the field of temperature gradients in conformity 
with the Fourier hypothesis 

-- -- s grad T (25) 

which permits rewritlr~ (23) thus 

O*T ~T OT -- kov2T. (26) 

dif fusivity con- Here two additio~l cormtants have been inserted to the standard thermal 
stant ko. Taking account of (25), Eq. (24) now becomes 

~ a 0~ + - q  : - -  s grad T. - +  (27) 

A more general form of this equation is obtained in [8] by using finite-difference representa- 
tions. 

4. Initial Conditions 

The introduction of higher derivatives into the heat-conduction equation requires reexam- 
ination of the initial and boundary conditions. This question is formulated most completely 
in [i0]. However, an example of an initial condition can be indicated such that solutions of 
the parabolic heat-conduction equation cannot satisfy. 

Let us consider the telegraph equation 

02T OT 
c~ -[- -- koV2T. (28) 

al 2 at 

Let the temperature be a periodic function of the coordinates, i.e., 

T = [(x, y, z) O(t), v~T = - - a e f ( x ,  y, z) O(t). 

For such p e r i o d i c  f u n c t i o n s  (28) goes over in to  an o r d i n a r y  d i f f e r e n t i a l  equa t ion  t ha t  agrees  
with the formula for the equation of oscillations of a material point 

d20 1 dO + - -  - -  + k 0 0 = O .  (29) 
a 2 dt z a 2 dt 

If 4akoa 2 << i, then its solution has the form 

0 = Aiexp[--a*kot] + A~exp [ - -  __[_1 t] 
L J 

For this equality to satisfy the zero initial condition, it must be rewritten thus 

O=  A ( e x p [ - - a 2 k ~  - al t ] )  " (30) 

569 



As a § 0 and t # 0 the complete solution of (30) goes over into the solution of the simpli- 
fied differential equation corresponding to the parabolic heat-conduction operator. The solu- 
tion mentioned has the form 

0 : Aexp[a2kot]. (31) 

Both solutions agree for sufficiently large values of t, but they will behave differently at 
the initial instant. Therefore, for a more exact description of the temperature field at any 
time, the hyperbolic equation (28) must be used in this case. The utilization of (26) can ex- 
tend the class of initial conditions still more. 

The above holds in the theory of a viscous fluid, to which Prandtl turned attention (see 
[ii]). There (31) and (32) correspond to solutions of the Euler and Navier--Stokes equations, 
and the zero initial condition is equivalent to the condition of fluid adhesion to a wall. 

At an earlier stage of using (28) in the theory of heat conduction, the material con- 
stant a was identified with the Maxwell relaxation time [12], which is a small quantity. This 
latter sharply constrained the domain of application of the equation mentioned. If (28) is 
supplemented by a relation for the heat flux 

=s + - q =  -- ZogradT, (32) 
0t 

then the parameter a can be determined from the law of variation of q on the body boundary. 

Indeed,  l e t  T = e-Ytu(x ,  y,  z, t ) ,  then we w i l l  have 

1 OZu 
-- VZU + u 

gz Ot ~ 2k0 

in place of (28). Here taken additionally into account is 

(33) 

1 
1 2 ~  = O, cr = . ( 3 4 )  

g2 2? 

On the body boundary the relationship (32) becomes 

1 dq + ~ =  __ ~,oe_Vtgrad ul.=v=z=O" 
2~1 dt 

(35) 

Therefore, the vibrational nature of the heat flux on the body boundary can cause tempera- 
ture waves within the body, whose attenuation will be determined by the material constants 
Xo and ko. 

A structural analysis of the heat conductivity [13], which permits the study of the in- 
fluence of heat flux on the body boundary on the process of heat conductivity in the whole 
domain by simple means, is especially effective in a joint study of (26) and (27), 

NOTATION 

k(T), thermal diffusivity coefficient; ~, relaxation parameter; g~ = Xo/CvPa , square of 
the heat wave velocity; Xo and ko, heat-conduction and thermal diffusivity constant; p, den- 
sity; Cv, specific heat at constant volume; T, temperature; t, time; x, y, z, space coordin- 
ates. 
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